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FOREWORD ‘ |

i

\\

The analysis presented in this report was conducted when the author

was connected with this activity. Since that time the group now engaged
in wc;rk on spherical shells have revised the original manuscript, par- -
ticul;rly the comparison of results based on the analysis in this report

with those based on earlier analyses.
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NO’I‘ATION
Plasticity coefficients
Plastic axial rigidity
Plastic flexural rigidity \
Young's modulus
Secant modulus

Tangent modulus
_ 2

operator = &1L . o9 &L, 5
do de

Shell thickness

- Ratio of stress intensity to membrane stress in

x-direction = V1 - k 4 K

Ratio of membrane stress in y-direction to that in

x-direction

Moments in x- and y-directions, respectively
Forces in x- and y-directions, respectively
Pressure

e

Plastic buckling pressure

Elastic buckling pressure

Yield pressure

Shear (see Figure 2)

Shell radius

E

s € and Es ey respectively

Displacements in x- and z-directions, respectively
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X, ¥, z Coordinates (see Figure 2)

o( n?/12R? |
Y .. Shear strain ,
E s ,EY Strains in x- and y-directions, respectively
€e . . EITBHE strain
€ Strain intensity
€p Plastic strain
' el'é €' Variational membrane strains in x- and y-directions,
respectively
" ; Plastic}ty ggd?ction factor
le Bijla{ar o}asticity reduction factor
']G Gerar"’i‘ ;;ti.city reduction factor
ﬂLé , Pizsticitgr :‘eduction factor developed in present paper
e (i L Angle (see Figure 2)
p.g Elastic Poisson's ratio
p.,{% Secant Poisson's ratio
p’t,; Tangent Poisson's ratio ‘\\
61 Stress intensity |
s % Stresses in x- and y-directions, respectively
T Shear \ \,
| PR (1 -, 2) \\
’ 2E_h )
v




Xl': XZ' Variational curvatures in x- and y-directicns,
respectively
Y | Angle (see Figure 2)

Primes refer to variational values during the buckling process.
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ABSTRACT
A solution for the plastic axisymmetric buckling of thin-

- walled spheres under hydrostatic pressure is derived. The

" theory accounts for strain-hardening of material and changes

- of Poisson's ratio in the plastic range. The plasticity

. reduction factor is expressed in terms of tangent and secant

moduli and’r;-::;hcepts of tangent and secant Poisson's

" ratios. For typical engineering materials there is little

~ difference between the results obtained from this solution

: and the earlier ones obtained from the solutions of Bijlaard

' and Gerard,

INTRODUCTION

Spherical shells have become more promir;ent in the development of
subinarinea and deep-sea vehicles. Complete spheres are being used
for bcea.nqgra.phic research vehicles; the TRIESTE is a notable example,
Onﬂthe other hand, hemispheres are being used to effect closure at bow
and stern of advanced submarine designs. Indications are that spherical
shells will be used more and more extensively in the f/uture.

A number of investigators have treated the small-dieﬂectlon analysis
of spherical shells subjected to external pressure. Both elastic and
inelastic buckling have been studied. Timoshenko" summarized the

classical, linear, small-deflection theory for the elastic buckling

A

* References are listed on page 17.




pressdre of complete spherical shells which was first developed by
Zoelly in 1915, An expression for the plastic,small-deflection buckling
of spherical‘ shells was first derived by Bijlaard.z Gerard3 obtained an
identiéal exp‘ression using deformation theory of plasticity in which the

work of Si:owell4 for flat plates was extended to cylindrical and spherical

shells, Both Bijlaard and Gerard in their analyses as;sumed Poisson's

’ [
ratio to be equal to a constant, 1/2. Gerard, however, intuitively modi-

fied his expression to include a variable Poisson's ratio.:

In this report theory is presented for the plastic, small-deflection
buckli;xg of a complete spherical shell of strain-hardening material under
external hydrostatic pressure. Whereas Bijlaardz and Gera.rd3 assumed
that Péisson's ratio in the plastic range is n constant, 1/?.;, this analysis
considers a variable-Poisson's ratio. The results of this more rigorous
ana.lys?is are compared with the existing analysis for sphericai shells, A
ma.tef:ial with an assumed stress-strain relationship is used.

PLASTIC BUCKLING THEORY
VARIATIONS OF FORCES AND MOMENTS

Before the equations of equilibrium of an element within a spherical

shell can be established, the variations of the forces and moments result-
| e

ing from the buckling process must be obtained. The yariational forces

and moments will be obtained by extending the theory of Reference 5 to

spherical shells,
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In.brief, Reference 5 uses the deformation theory of plasticity gener- S
alized for a var'{é.b—lﬁe/l;;i’s'soﬁ's ratio. The plasticity theory assumes a :
monotonically increasing stress-strain curve of the strain-hardening ‘}
type; see Figure 1. It is assumed that Poisson's ratio is a function of ;

1

the state of stress and varies from its elastic valuey , = 1/3 to an upper
limit of Bg = 1/2 for an isotropic, plastically incompressible solid; see

Figure 1.
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j Figure 1 - Variations of Strain and Poisson's Ratio with Stress
The biaxial state of stress and strain in a shell is related to the uni-
axial state of stress and strain for a simple compression specimen by

(

expressions for stress and strain intensities, For pr{pcipal stressen

and strains thesa expressions are as follows:




Stress Intensity:

2 2 :
= - ]
A J o+ dy ¢ (1]

Strain Intensity:

S _ 2., 2. 2 2
L og > WI ps+ps)(ex+ ey,+(4"'s By l,exey [2]

¢ c [
g == -p - ‘\
’ x E .~ FKE_
L °
&F "M E_ - (3]
S ]
Y =2(1+p )7/ J \-\

Secant Modulus:

e

E =""i/e1 [4j

The ‘expression for the plastic Poisson's ratio o8 is one derived by

Gerard and Wildhorn:6

E
1 1 8
A - [5]

In Reference 5 these plastic stress-strain relations were used to

determine variago’_n_gj | forces and moments for the axisymmetric buckling

of cylinders, In this presentation, the axisymmetric buckling of spheres

will be analyzed., The expression for the variation in strain intensity of

4
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Reference 5 can be readily modified to apply to a sphere. This erpressmn
\

with variations denoted by primes, was found to be:

1 ; |
ey = (z—p )d +(2p. -1,6 €'
i z(1-u§)A’o°i’ [’ T Y] i
¥ [(z"s-l,dx*(z-ps) d}'] G;'s !
where
l1-E E > |
i t/ s 2 2;
-e 4(1-}1:’1(7- [ s Hs ] bs ]

d
For a spherical shell deforming uniformly dx = dy; therefore k = ;x =1

2 Ul
and K" =1, Also,

&= - =x [8a]
€= &2} [8b]
Equations [6]and [7] become
| e+ & o3 + X3
8% 21 WA AT~ p)A_* []

(1 - Et/Es)(l- 2p,)

A -
o =1 2(1 - p.', [10]
t
Le | S, "E ¢e. [11]
Then €
' x
Sx- Es c;- E:(Es - Et) e:; / [12]

P aa R e TR e -

:
3
b
{
5
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let z =z when e{ = 0; then, from Equation [9],
. o

atg [13]

z°= A + )
X1 7 Xz

Subétituting Equations [8a], [9], and [13]into Equation [12] gives

’ elE_-E)
= - ! -
S_ Es( g -zx}) + 31~ n)A & (x1+xé)(z z) [14]
s o1l
Similarly,
, e (E, -E)
Sy= Es(eé- zx'z) Ty PS)AO% (xi + xé)(z - zo) [15]
S_+pS (
Since ¢ = X3 ¥
‘ x g2 \
by
s! +ps' [1 )s_ 2,8 ] '
o = x+psy_ ( +ig) y “2Bg% Ky [16]
x" T, 2 (1-2)2
Hg Hg

{
Theﬂ variational ﬁxial force. is
+h/ 2
x

—— - “h/z

Substituting Equation [16]into Equation [17] and integrating glves

1
N = Bp(Al & + hgAy, el {18]
| E h
where B = —2 5 [19]
P 3. W

' i .
N = '
f dxdz o [17]




A o1 (1 - Et/Es)(l +p.s).

1 4A°(1 - p.s)

A._=1_ (1 - I';t/ES)(1 t i)

12 -
4u sAou ) p's)
Similarly,
| '

Ny = BP(AI &+ p A,

f The variational axial moment is
' +h/ 2
M = o' zdz
x
Sﬁbstitu_ting Equetton{16] into Equation [23] and integrating,

] .
S - ! 1
Mx Dp(Al X1 + p'sAIZ XZ)

where

Similarly,

1
- ) '
My= Dp(Al X2 * psAIZXI)

The plasticity coefficients A1 and A12

by Gerard7 when By is set equal to 1/2,

[20]

(21]

[22]

[23]

[24]

[25]

[26]

reduce to expressions obtained

PR
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EQUATIONS OF EQUILIBRIUM
The equations of equilibrium for a shell buckling axisymmetrically are

given by Timoshenkol asg:*

J

g s N
A V-

dN
X ! ! ' PR [u dw
o tIN-NJcoto-Q -5 (R *'r'i&"i) =0
i
Q'
x v 1ot du  u 2w
30 +Qxcot9 +Nx+Ny+PR(§E'5 +Rcot0-'§-)
i ‘ [27]
I . 2
- PR(du+d ) PRcoto(u+dw)=o
i “", . ey O —g— — —————— - Sm——— — ———
| 2 \Rde " 2 2 R ¥ Rde
| ]
dM ' ] t
—ZX 4(M_-M )cotb-Q R =0
de ¥ x Y x J

: (
The notation used is explained in Figure 2, .n terms of the displacements,*

the variational membrane strains and variational curvatures are:

1o AL W 'm Lot - ¥
9" Rdo "R €2 R R
28
: | Les]

dw du u dw
X\ = + X! =(-—-+ )cotO
1 Rr%240% R2%0 2 \R® R340

' . - -
Q, can be eliminated by combining the first two qualities of Equations [27]

By substituting Equations [18], [22], [24], [26], and [28] into the

resulting two equations, there results

* The displacements u and w are variational values but for convenience

will not b denoted by primes.




dzu du
(1+«) Al';?+A1cot0 a—g'-(

Es™12 1

12 de 3 1 2

3 2
(A +pA )Y +0([A1d +A coto L _
L tae do

dw
~¢<u+dg)-0

and R

d3

du u u
(Al + psAlz)(dO +ucot9 - Zw) + o([- Al 3" ZA1 cot @ —

de

2, ,du
+(A + kA, tA cot7e) 39 - cot® (2A1 -

diw 3w
1 d04 1 do3 1 s 12

-

2., dw
cot@ (2A1 = Bghy, tA cot”0) a—é-]

Avs

+A, cot?g) LW

A._+A cotZO)u

2 _,dw
(u sA12 +A1c\ot 9) a—o"]

\

[29]

dZ

do

+A1cot29) u

2

a0

do 2

2
-¢(-ucoto-9—+4w+cotod“’ d“’)no [30]

do
. where
« = Max?
and
PR(1 - p.z,
¢ = 3
2E h
s

de

(31]

(32]

W




Equations [29] and [30] reduce to Equations [e]and [f]on page 492 of

Reference 1 wm:é E and Ky = Ry

Figure 2 - Forces and Moments on an Element of a Spherical Shell

'PLATE BUCKLING EQUATION r

|
The solution for the buckling pressure is practically identical to that

;
- described by Timoshenko in Reference 1. Thus, introducing a new

“variable, the angle ¢ (see Figure 2) as follows:
=4y
T \

and using the symbol H for the operation

2
d (Z) + cot@ d—&(—-g)
deo

+ 2!

10




there is obtained from Equation [Z9](after integrating once) and also

from Equation [30] the following: /\

\

A H(Y) + <A Hlw) - (A, +p A, N +w) -4»2‘(1& +w) =0 (33]
(A HH(Y +w) = (A + A ) HIS) = (3A] +p A ) olw + )

4 Z(Al + p'Aiz)('q) +w) + ¢[—H(¢) +Hlw) +2(¢ +w)] =0 \\ [34]

As in the case of the elastic theory, Equations [33‘] and [34] have
j‘solutions in terms-of spherical functions. Rather than repeat steps
previously described, 1 only the final buckling equation, resulting from
éaetting the determinant of two homogeneous equations equal to zero, is

' presented:

cr 2 3
l-p,8

Al -pA 2
2 1” P12 h
P = Es (R) [35]
Equation,[}s}reduces to the classical, elastic, small-deflection
. theory Es = E and By = Bgo
The plastic buckling equation is more easily related to the elastic
:“ solution if the concepts of secant and tangent Poisson's ratios are intro-

dirced. The secant Poisson's ratio is the welghted average of the elastic

: " Poisson's ratio By and the fully plastic value kot see Figure 1. Thus

p.eee +p € '

By g

11

I e




et R A R R S N T

But =d =4d,,E , th
ee i‘/E and ep i./ p us

B, B
= 2,2
b, E |5 +Ep [37]
o ) /’*/’
S?nce ep = € = & then
r o 9
': E = t . = i = 1
| Pat% 4l 11
Eg E Es E
or
1.1 1
E
Ep E_ [(38]
Substituting Equation [38] into Equation [37],
] ¢ Es
ke =y =l m ) [39]

For a fully plastic, isotropic, incompressible material, p,p =1/2. Then,
N
Bg 2727 K ( [40]
‘ \
Equation [40]1is identical to Equation [5] presented by Gerard and

Wildhorn6 as the plastic Poisson's ratio.
The tangent Poisson's ratio is defined herein as the number which,

when multiplied by the variation in strain, gives the variation in %train
3
in the transverse direction. Thus

/"'tei " “‘a‘i)' TR [41]‘

e

12




‘Therefore,

[ g T
pt,_,%seis% [42]

The variation of Equation [40] is {

]
1 ! \
L= (5= p,) E(E’/E - E./E) [43]
Substituting Equations [40] and [43]into Equation [42] gives the final

jexpreuion: : - \ \

U S |
' by 2-(2-l"e) F . [44]

In terms of the secant and tangent Poisson's ratios, Equations [39]

‘and [44], Equation [35] can be show~ to be:

\ Et.Es h 2
Fer 2N -0 +n) (i) [45]

DISCUSSION AND CONCLUSIONS

Equation [45] may be compared with the classical, elastic solution

e S [46]

) VS(I- p.z,

through the use of the plasticity-reduction factor ndefined as

P

cr
"B, [47]

13
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Substituting Equations [45] and [46]into Equation [47]yields

2
=E§ Et(l - p.e)
E Es(l - p.t)(l + ps)

N (48]

Equation [48] reduces identically to that developed by Bi,jlam‘dZ and

Gerard3 if By and p_ are set equal to 1/2; thus
/“"/s’

W

' 2
E E(1 -4
86> BN “EToTN [49]
B,G E E_{0.75)

Equation [48] also reduces to that proposed by Gerard3 when he intui-

¢
tively accounted for a variable Poisson's ratio in the plastic range, if R

is set equal to [ thus

2
Es ft(l - p.e)

"GcE [50]

E_(1- 4%

Equation [45], therefore, reduces to the following:

1, Zoelly's classical, small deflection, elastic theory when moduli
gnd plastic Poisson's ratios take on elastic values; see Equation [48].

2, Bijlaard's and Gerard's plastic solution when sfecant and tangent |
Poisson's ratios are set equal to 1/2; see Equation [4\9].

3. Gerard's intuitively modified plastic solution when the tangent

Poisson's ratio is set equal to the secant Poisson's ratio; see Equation

1

[s0]. ‘
‘ v _ \\

14




The collapse preaéures as determined by the inelastic theories of
Bijlaard and Gerard are compared with Equation [45] of this paper in
 Figure 3. The abscissa is the ratio of the classical, small-deflection,

| elastic collapse pressure Pe to the pressure at which the average stress

. reaches the yield point, P_, as determined by the 0.2 percent offset

y
method. The ordinate is the ratio of theoretical in‘ela.stic collapse
. Pressure P, (as determined by Equation [45] , Bijl\'gard and Gerard), to |
b’, Py. A typical stress-strain curve for 7075-T6 aluminum bar stock has
been assumed in all theoretical calculations. There is little difference
; between the pressures obtained from the inélastic theories of Bijlaard
and Gerard and the more rigorous theory developed herein. T}:e maxi-
mum difference between the three theoretical collapse pressures for a
. spherical shell of 7075-T6 aluminum is about 2 percent; see Figure 3.
Similar results would be obtained for other strain-hardening materials,
Theory which fails to consider the effects of imperfections, residual
stresses, boundary conditions, and penetrations will not consistently
predict the collapsg strength of spherical shells normally encountered
in engineering practice. However, this theory will, if verified by
experiment, serve as a reference to which tests of fabricated, spherical
shells may-beTompared to determine the detrimental effects of initial

departures from sphericity, variations in shell thickneu, residual

stresses, boundary conditions, and penetrations,

15
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GERARD (REFERENCE 3 )

LI

/Py
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